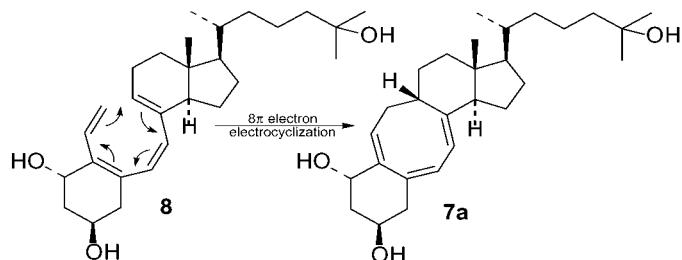


An 8π Electron Electrocyclization Leading to a 9,19-Methano-Bridged Analogue of $1\alpha,25$ -Dihydroxyvitamin D₃


Rena Hayashi, Susana Fernández, and William H. Okamura*

Department of Chemistry, University of California, Riverside, California 92521

william.okamura@ucr.edu

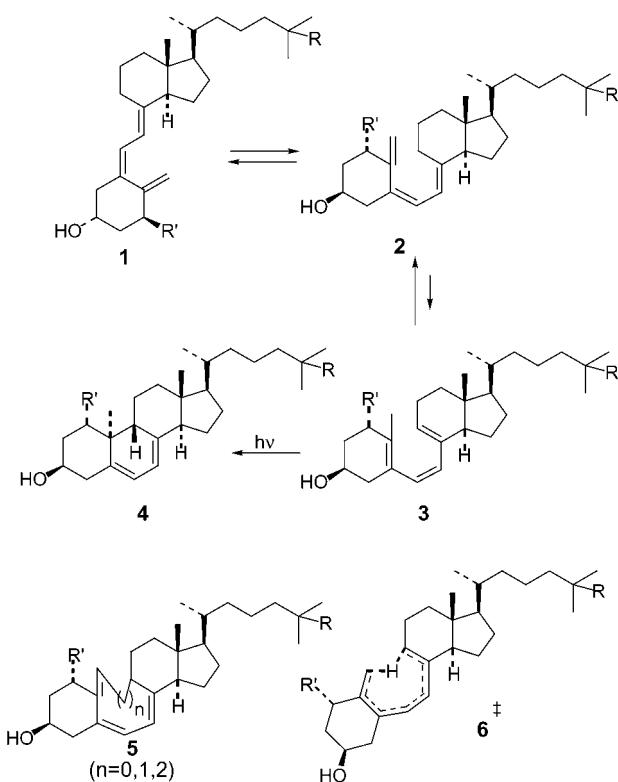
Received January 16, 2002

ABSTRACT

Lindlar semihydrogenation of a vitamin D type trienye leads spontaneously to $9\alpha,19$ -methano- $1\alpha,25$ -dihydroxyvitamin D₃. The intermediate triaene resulting from the reduction undergoes a rapid, stereoselective 8π electron electrocyclization affording a novel steroid containing a linearly fused ABC (six-eight-six) 1,3,5-cyclooctatriene carbon framework.

The steroid hormone $1\alpha,25$ -dihydroxyvitamin D₃ (**1a**, 1,25-D3) spontaneously tautomerizes via a [1,7]-sigmatropic hydrogen shift to the extent of about 5% at equilibrium to $1\alpha,25$ -dihydroxyprevitamin D₃ (**3a**, 1,25-PreD3) (Scheme 1).¹ The hormone **1a**, the bioactive metabolite of **1c** formed via **1b**, is potent in both genomic and rapid (nongenomic) actions, processes considered to be mediated via binding of steroid to a nuclear vitamin D receptor (n-VDR) and a putative membrane receptor (m-VDR), respectively.² It has been observed that the tautomer 1,25-PreD3 (**3a**) is able to fully mimic the membrane actions of 1,25-D3 but has little action at the nuclear level.³ It has also been shown that $1\alpha,25$ -dihydroxylumisterol₃ (**4a**, 1,25-Lumi), the 6π electron electrocyclized photoproduct of **3a**, also exerts selective

action at the membrane level.⁴ The selectivity of **3a** and **4a** toward membrane actions of 1,25-D3 has therefore suggested that the higher energy, spectroscopically invisible cisoid conformation of 1,25-D3, namely, **2a**, mediates membrane actions via selective m-VDR binding.⁵ A recent X-ray study


(3) (a) Norman, A. W.; Okamura, W. H.; Farach-Carson, M. C.; Allewaert, K.; Branisteau, D.; Nemere, I.; Muralidharan, K. R.; Bouillon, R. Structure–Function Studies of 1,25-Dihydroxyvitamin D₃ and the Vitamin D Endocrine System: 1,25-Dihydroxy-Pentadeuterio-Previtamin D₃ (As a 6-s-Cis Analog) Stimulates Nongenomic But Not Genomic Biological Responses. *J. Biol. Chem.* **1993**, *268*, 13811–13819. (b) Norman, A. W.; Bouillon, R.; Farach-Carson, M. C.; Bishop, J. E.; Zhou, L.-X.; Nemere, I.; Zhao, J.; Muralidharan, K. R.; Okamura, W. H. Demonstration that $1\beta,25$ -Dihydroxyvitamin D₃ is an Antagonist of the Nongenomic but Not Genomic Biological Responses and Biological Profile of the Three A-ring Diastereomers of $1\alpha,25$ -Dihydroxyvitamin D₃. *J. Biol. Chem.* **1993**, *268*, 20022–20030.

(4) Norman, A. W.; Okamura, W. H.; Hammond, M. W.; Bishop, J. E.; Dormanen, M. C.; Bouillon, R.; van Baelen, H.; Ridall, A. L.; Daane, E.; Khoury, R.; Farach-Carson, M. C. Comparison of 6-s-cis- and 6-s-trans-Locked Analogs of $1\alpha,25$ -Dihydroxyvitamin D₃ Indicates that the 6-s-cis Conformation is Preferred for Rapid Nongenomic Biological Responses and that Neither 6-s-cis- nor 6-s-trans-Locked Analogs are Preferred for Genomic Biological Responses. *Mol. Endocrinol.* **1997**, *11*, 1518–1531.

(5) Okamura, W. H.; Midland, M. M.; Norman, A. W.; Hammond, M. W.; Dormanen, M. C.; Nemere, I. Biochemical Significance of the 6-s-cis Conformation of the Steroid Hormone $1\alpha,25$ -Dihydroxyvitamin D₃ Based on the Provitamin D Skeleton. *Ann. N. Y. Acad. Sci.* **1995**, *761*, 344–348.

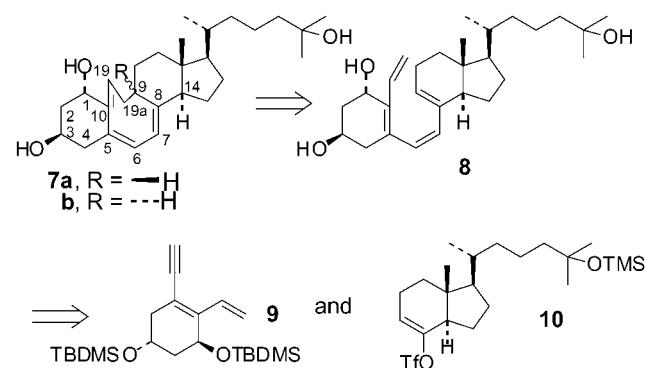
(1) Curtin, M. L.; Okamura, W. H. $1\alpha,25$ -Dihydroxyprevitamin D₃: Synthesis of the 9,14,19,19,19-Pentadeuterio Derivative and a Kinetic Study of Its [1,7]-Sigmatropic Shift to $1\alpha,25$ -Dihydroxyvitamin D₃. *J. Am. Chem. Soc.* **1991**, *113*, 6958–6966.

(2) (a) Bouillon, R.; Okamura, W. H.; Norman, A. W. Structure–Function Relationships in the Vitamin D Endocrine System. *Endocr. Rev.* **1995**, *16*, 200–257. (b) *Vitamin D*; Feldman, D., Glorieux, F. H., Pike, J. W., Eds.; Academic Press: San Diego, 1997. (c) *Vitamin D: Physiology, Molecular Biology, and Clinical Applications*; Holick, M. F., Ed.; Humana Press: Totowa, 1999.

Scheme 1^a

^a a, R = R' = OH; b, R = OH, R' = H; c, R = R' = H.

of 1,25-D3 bound to its n-VDR has revealed that the transoid conformation of the hormone (i.e., **1a**) is the active nuclear conformer.⁶


Thus, rotation about the 6,7-single bond of the seco-steroid vitamin D skeleton may play an important role in modulating the different biological activities of vitamin D. It became of interest to further probe the less well investigated membrane actions of 1,25-D3 via development of a synthesis of a series of 9,19-bridged vitamin D molecules of the type **5**.⁷ This kind of polyene conformationally “locking” strategy has been used by Nakanishi and others in probing the biological activities of retinoids (vitamin A).⁸ As is apparent from the transition state structure **6** for the sigmatropic shift of **1** to **3**, analogues of the type **5** have also recently engendered interest as transition state mimics for the development of

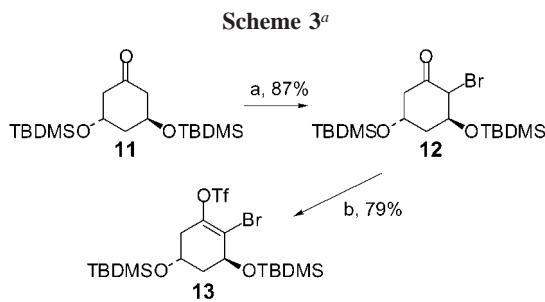
(6) (a) Rochel, N.; Wurtz, J. M.; Mitschler, A.; Klahholz, B.; Moras, D. The Crystal Structure of the Nuclear Receptor for Vitamin D Bound to its Natural Ligand. *Mol. Cell* **2000**, *5*, 173–179. (b) Tocchini-Valentini, G.; Rochel, N.; Wurtz, J. M.; Mitschler, A.; Moras, D. Crystal Structures of the Vitamin D Receptor Complexed to Superagonist 20-epi Ligands. *Proc. Natl. Acad. Sci. U.S.A.* **2001**, *98*, 5491–5496.

(7) (a) Okamura, W. H.; Midland, M. M.; Hill, D. K.; Ringe, K.; Takeuchi, J. A.; Vassar, V. C.; Vu, T. H.; Zhu, G.-D.; Norman, A. W.; Bouillon, R.; Farach-Carson, M. C. Vitamin D Drug Design and Synthesis: Towards Understanding the ‘Mutually Induced Fit’ of Vitamin D Ligands and Various Proteins Which Bind Metabolites and Analogs. In *Vitamin D: Chemistry, Biology and Clinical Applications of the Steroid Hormone*; Norman, A. W., Bouillon, R., Thomasset, M., Eds.; University of California, Riverside, 1997; pp 11–18. (b) Okamura, W. H.; Do, S.; Kim, H.; Jeganathan, S.; Vu, T.; Zhu, G.-D.; Norman, A. W. Conformationally Restricted Mimics of Vitamin D Rotamers. *Steroids* **2001**, *66*, 239–247.

catalytic antibodies for this particular type of pericyclic process.^{7,9} It is the purpose of this Letter to describe the first synthesis of an analogue in this series possessing the full vitamin D triene skeleton, namely, the 9,19-methano-bridged system **7** (i.e., **5**, n = 1) (Scheme 2).

Scheme 2

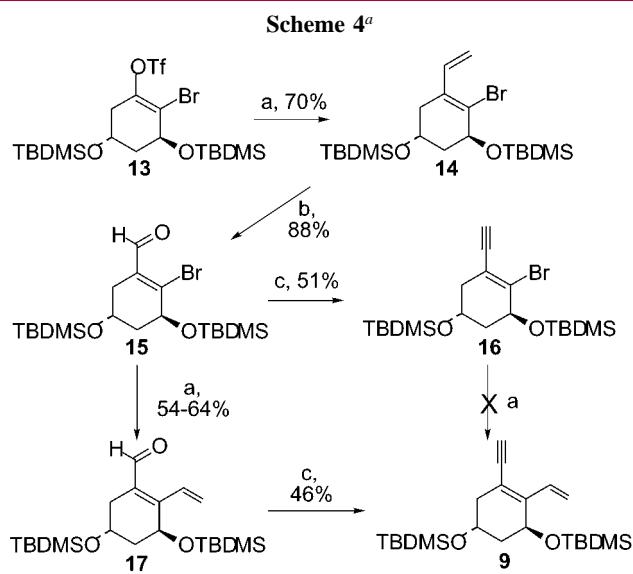
It was envisaged that synthesis of **7** could be achieved by conrotatory 8π electron electrocyclization¹⁰ of **8**, a previtamin derivative related to **3a** wherein its C-10 methyl is replaced by a vinyl group. Transition metal mediated cross-coupling of the A-ring dienyne **9** with enol triflate **10** followed by Lindlar reduction was anticipated to lead to the desired **7**, albeit of uncertain stereochemistry at C-9.


It was also anticipated that A-ring dienyne **9** could be synthesized from the bromoenol triflate **13**,¹¹ which was accessed from the known C₂-ketone **11** (Scheme 3). The latter, obtainable in six steps from (−)-quinic acid,¹² was α-brominated (LHMDS and then Br₂ to afford **12**, 87%) and

(8) (a) Kandori, H.; Sasabe, H.; Nakanishi, K.; Yoshizawa, T.; Mizukami, T.; Shichida, Y. Real-Time Detection of 60-fs Isomerization in a Rhodopsin Analog Containing Eight-Membered-Ring Retinal. *J. Am. Chem. Soc.* **1996**, *118*, 1002–1005. (b) Caldwell, C. G.; Derguini, F.; Bigge, C. F.; Chen, A.-H.; Hu, S.; Wang, J.; Sastry, L.; Nakanishi, K. Synthesis of Retinals with Eight- and Nine-Membered Rings in the Side Chain. Models for Rhodopsin Photobleaching Intermediates. *J. Org. Chem.* **1993**, *58*, 3533–3537. (c) de Lera, A. R.; Chandraratna, R. A. S.; Okamura, W. H. Synthesis and Studies of 12-s-Cis Conformationally Locked Retinoids. In *Chemistry and Biology of Synthetic Retinoids*; Dawson, M. I., Okamura, W. H., Eds.; CRC Press: Boca Raton, 1990; pp 201–227 and references therein.

(9) Codesido, E. M.; Castedo, L.; Granja, J. R. Access to [6.4.0]-Carbocyclic Systems by Tandem Metathesis of Dienynes. A Step Toward the Synthesis of a PreD₃-D₃ Transition State Analogue. *Org. Lett.* **2001**, *3*, 1483–1486.

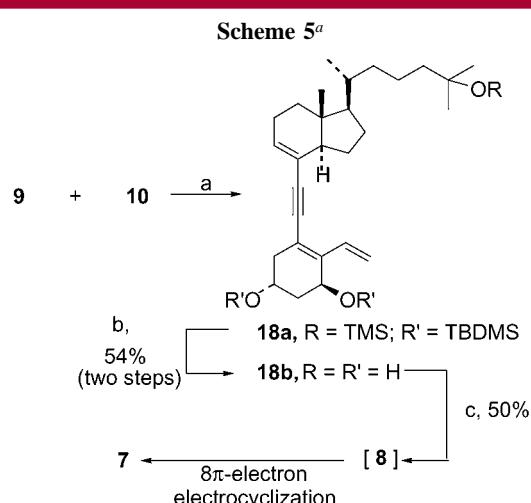
(10) (a) Marvell, E. N. *Thermal Electrocyclic Reactions*; Academic Press: New York, 1980. (b) Woodward, R. B.; Hoffmann, R. Stereochemistry of Electrocyclic Reactions. *J. Am. Chem. Soc.* **1965**, *87*, 395–397. (c) Okamura, W. H.; De Lera, A. R. 1,3-Cyclohexadiene Formation Reactions. In *Comprehensive Organic Synthesis*; Trost, B. M., Fleming, I., Eds.; Pergamon Press: London, 1991; Vol. 5, pp 699–750. (d) Thomas IV, B. E.; Evanseck, J. D.; Houk, K. N. Electrocyclic Reactions of 1-Substituted 1,3,5,7-Octatetraenes. An ab Initio Molecular Orbital Study of Torquoselectivity in Eight-Electron Electrocyclizations. *J. Am. Chem. Soc.* **1993**, *115*, 4165–4169.


(11) (a) Hayashi, R.; Okamura, W. H. 1 α , 25-Dihydroxyvitamin D₃ and its Analogs. In *Vitamin D Endocrine System: Structural, Biological, Genetic and Clinical Aspects*; Norman, A. W., Bouillon, R., Thomasset, M., Eds.; University of California, Riverside, 2000; pp 65–68. (b) von Zezschwitz, P.; Petry, F.; de Meijere, A. A One-Pot Sequence of Stille and Heck Couplings: Synthesis of Various 1,3,5-Hexatrienes and Their Subsequent 6π-Electrocyclizations. *Chem. Eur. J.* **2001**, *7*, 4035–4046.

^a (a) LHMDS, THF; Br₂, CH₂Cl₂; (b) KHMDS, THF–HMPA; PhNTf₂.

then transformed into **13** (KHMDS, THF, HMPA followed by PhNTf₂, 79%). Formation of the latter was critically dependent upon using HMPA as cosolvent.

Direct alkynylation reactions of **13** under either the Stille (using alkynylstannanes with $\text{Pd}(\text{PPh}_3)_4$ or Pd_2dba_3 with or without addends such as PPh_3 , AsPh_3 , and/or LiCl) or Sonogashira (using terminal alkynes with $\text{Pd}(\text{PPh}_3)_4$, $(\text{PPh}_3)_2\text{Pd}(\text{OAc})_2$, $(\text{PPh}_3)_2\text{PdCl}_2$, $\text{Pd}(\text{OAc})_2/\text{PPh}_3$ or $\text{PdCl}_2/\text{PPh}_3$) coupling conditions have thus far proven singularly unsuccessful in our hands.¹³ Surprisingly, vinylation of **13** (Scheme 4) using the Farina modification¹⁴ of the Stille process


^a (a) $\text{CH}_2=\text{CHSnBu}_3$, $\text{Pd}_{2}\text{dba}_{3}$, AsPh_3 , LiCl , NMP ; (b) OsO_4 , NaO_4 , $\text{THF}-\text{H}_2\text{O}$; (c) TMSCHN_2 , LHMDS , THF .

(tributylvinylstannane, Pd_2dba_3 , AsPh_3 , LiCl , NMP, 35 °C, 14 h) produced the bromodiene **14** in 70% yield. Oxidative

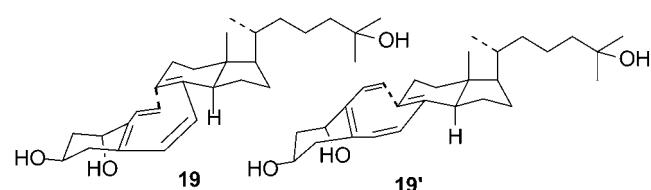
(12) (a) Perlman, K. L.; Swenson, R. E.; Paaren, H. E.; Schnoes, H. K.; DeLuca, H. F. Novel Synthesis of 19-Nor-Vitamin D Compounds. *Tetrahedron Lett.* **1991**, 32, 7663–7666. (b) DeLuca, H. F.; Schnoes, H. K.; Perlman, K. L.; Swenson, R. E. Novel Synthesis of 19-Nor Vitamin D Compounds. *Eur. Pat. Appl.* 92304837.5, 1992. (c) DeLuca, H. F.; Schnoes, H. K.; Perlman, K. L. Intermediates for the Synthesis of 19-Nor Vitamin D Compounds. *Eur. Pat. Appl.* 92304838.3, 1992.

cleavage (OsO_4 , NaIO_4 , 88%) afforded bromoaldehyde **15**, which upon elongation (TMSCHN_2 , BuLi , 51%) afforded bromoenyne **16**. The latter however could not be vinylated directly to produce the desired **9** (using the same Farina–Stille process). This dienyne could however be obtained by reversing the sequence. Namely, **15** was vinylated first (54–64% yield using the same Farina–Stille process) to produce **17**, which in turn could be transformed to the desired dienyne **9** (TMSCHN_2 , BuLi , 46%).

Standard Sonogashira coupling of dienye **9** with the CD fragment **10** $[(\text{PPh}_3)_2\text{Pd}(\text{OAc})_2, \text{CuI}, \text{Et}_2\text{NH, DMF}]$ followed by direct desilylation (TBAF, THF) afforded the trienye **18b** in 54% yield (Scheme 5).¹⁵ Most interestingly, Lindlar

^a (a) $(\text{PPh}_3)_2\text{Pd}(\text{OAc})_2$, CuI , Et_2NH , DMF ; (b) TBAF , THF ; (c) H_2 , $\text{Lindlar cat. quinoline}$, MeOH .

reduction of **18b** (H_2 , Lindlar catalyst, quinoline, MeOH, <25 °C, <1 h; and <25 – 33 °C during workup and purification, ~ 30 min) afforded the electrocyclized 9,19-methano-bridged product **7** directly as a single diastereomer in 50% yield. Aside from the identification of the product as the cyclized product **7**, even from a cursory examination of its ^1H and ^{13}C NMR spectra, its UV spectrum [λ_{max} 253 nm (ϵ 2400)] was particularly diagnostic. Whereas the parent


(13) (a) Farina, V.; Krishnamurthy, V.; Scott, W. J. *The Stille Reaction*. In *Organic Reactions*; Paquette, L. A., et al. Eds.; John Wiley & Sons: New York, 1997; Vol. 50. (b) Campbell, I. B. *The Sonogashira Cu-Pd-catalysed Alkyne Coupling Reaction*. In *Organocupper Reagents: A Practical Approach*; Taylor, R. J. K., Ed.; Oxford University Press: New York, 1994; pp 217–235.

(14) Farina, V.; Krishnan, B. Large Rate Accelerations in the Stille Reaction with Tri-2-furylphosphine and Triphenylarsine as Palladium Ligands: Mechanistic and Synthetic Implications. *J. Am. Chem. Soc.* **1991**, 113, 9585–9595.

(15) (a) Mascareñas, J. L.; Sarandeses, L. A.; Castedo, L.; Mouríño, A. *Tetrahedron* **1991**, *47*, 3485–3498. Palladium-catalyzed Coupling of Vinyl Triflates with Enynes and its Application to the Synthesis of 1 α ,25-Dihydroxyvitamin D₃. (b) Baggioolini, E. G.; Iacobelli, J. A.; Hennessy, B. M.; Uskokovic, M. R. *J. Am. Chem. Soc.* **1982**, *104*, 2945–2948. Stereoselective Total Synthesis of 1 α ,25-Dihydroxycholecalciferol. (c) Zhu, G.-D.; Okamura, W. H. Synthesis of Vitamin D (Calciferol). *Chem. Rev.* **1995**, *95*, 1877–1952. (d) Collins, E. D.; Norman, A. W. Vitamin D. In *Handbook of Vitamins*, 2nd ed.; Machlin, L. J., Ed.; Marcel Dekker: New York, 1991; p 66.

hormone **1a** and its various metabolites (e.g., **1b** and **1c**) characteristically exhibit λ_{max} (EtOH) 264 nm ($\epsilon \sim 19\,000$),^{15b,d} 1,3,5-cyclooctatrienes exhibit λ_{max} values near 250 nm with notably attenuated extinction coefficients of $\epsilon \sim 2000$.¹⁶

In retrospect, the facility with which the presumed octatetraene **8** undergoes cyclization is not surprising. The parent (3Z,5Z)-1,3,5,7-octatetraene cyclizes even at $-78\text{ }^{\circ}\text{C}$ ¹⁷ while similar dimethyl-capped systems (the various (4Z,6Z)-2,4,6,8-decatetraenes) cyclize at temperatures ranging from -10 to $+65\text{ }^{\circ}\text{C}$.¹⁸ It is also possible that the strain imparted by the positioning of a $\Delta^{8,9}$ -double bond in the *trans*-hydrindane skeleton of **8** may also play a role in accelerating the 8π electron electrocyclization.¹⁹ That this presumed conrotatory electrocyclization produces mainly if not exclusively a single diastereomer, namely, the 9α epimer **7a**, can be rationalized on the basis of the analysis shown in Figure 1. This epimer can be considered to result from a stereo-

Figure 1. Possible transition state conformations for the formation of **7a** (via axial attack, **19**) and **7b** (via equatorial attack, **19'**) from electrocyclization of tetraene **8**.

electronically favored axial attack (**19**) rather than an equatorial coupling (**19'**).²⁰

(16) Monthony, J. F.; Okamura, W. H. C₁₁H₁₂ Hydrocarbons-I. Reaction of Cyclooctatetraene Dianion with Substituted 1,3-Dichloropropanes. Preparation of Tricyclo[5.4.0.0^{2,6}]undeca-3,8,10-triene. *Tetrahedron* **1972**, *28*, 4273–4283.

(17) Goldfarb, T. D.; Lindqvist, L. Flash Photolysis Studies of 1,3,5-Cyclooctatriene. A Reversible Ring Opening. *J. Am. Chem. Soc.* **1967**, *89*, 4588–4592.

(18) (a) Marvell, E. N.; Seubert, J. Stereochemistry of Formation of Cyclooctatrienes via Valence Isomerization. *J. Am. Chem. Soc.* **1967**, *89*, 3377–3378. (b) Huisgen, R.; Dahmen, A.; Huber, H. Stereospecific Conrotatory Valence Isomerization of Octatetraenes to Cycloocta-1,3,5-trienes. *J. Am. Chem. Soc.* **1967**, *89*, 7130–7131. (c) Huisgen, R.; Dahmen, A.; Huber, H. Zur Kinetik der Conrotatorischen Valenzisomerisierung von Stereoisomeren Decatetraenen. *Tetrahedron Lett.* **1969**, 1461–1464. (d) Dahmen, A.; Huisgen, R. Zur Stereospezifität der Conrotatorischen Cyclisierung des Decatetraens. *Tetrahedron Lett.* **1969**, 1465–1469.

(19) Havinga, E. Vitamin D, Example and Challenge. *Experientia* **1973**, *29*, 1181–1316.

The stereochemistry of the cyclized product as **7a** was tentatively established through a series of 1D and 2D ¹H and ¹³C NMR studies. That the C-9 proton of the observed product is β oriented, and hence equatorial, to the chairlike C-ring of **7a** is based on the observation of a $J_{\text{eq},\text{eq}}$ and a $J_{\text{eq},\text{ax}}$ pair of vicinal splittings²¹ by the protons on C-11 to that on C-9. The epimer **7b** should have exhibited a large $J_{\text{ax},\text{ax}}$ and a small $J_{\text{ax},\text{eq}}$ splitting²¹ of the C-9 proton by the protons at C-11, which were not detected. Moreover, in the NOESY spectrum, a cross-peak was detected between H-14 α and an H-19 α proton but not the H-9 proton. A detailed NMR analysis is presented in the Supporting Information.

Finally, it is noted with interest that 1,3,5-cyclooctatrienes are notorious for their propensity to undergo rather facile disrotatory 6π electron electrocyclization to their bicyclo[4.2.0]octa-2,4-diene counterparts.^{10a,22} This extrathermal conduit can limit the use of 8π electron electrocyclizations in eight-membered ring syntheses. It is noteworthy that **7a** shows little tendency toward such a cyclization under ambient conditions,²³ possibly because a strained spirocycle would result. Thus the exploration of 8π -electron cyclizations of suitably substituted octatetraenes analogous to **8** in applications to medium ring syntheses is a novel feature of the results described herein.

Acknowledgment. Financial support under NIH Grant DK-16595 and the UC Riverside Academic Senate Committee on Research is gratefully acknowledged. We thank Dr. Daniel B. Borchardt, Dr. Leah Gayo, Ms. Ellen VanElstyne, and Mr. John Alexander for contributions to this study. Professors M. Mark Midland and Anthony W. Norman provided valuable comments regarding this study.

Supporting Information Available: Experimental procedures and spectroscopic data. This material is available free of charge via the Internet at <http://pubs.acs.org>.

OL020017H

(20) Sheves, M.; Berman, E.; Mazur, Y.; Zaretskii, Z. V. I. Use of ²H NMR and Mass Spectrometry for the Investigation of the Vitamin D₃–Previtamin D₃. *J. Am. Chem. Soc.* **1979**, *101*, 1882–1883.

(21) (a) Silverstein, R. M.; Bassler, G. C.; Morrill, T. C. *Spectrometric Identification of Organic Compounds*, 5th ed.; John Wiley & Sons: New York, 1991. (b) Jackman, L. M.; Sternhell, S. *Applications of Nuclear Magnetic Resonance Spectroscopy in Organic Chemistry*, 2nd ed.; Pergamon Press: Oxford, 1969. (c) Braun, S.; Kalinowski, H.-O.; Berger, S. *150 and More Basic NMR Experiments: A Practical Course*, 2nd ed.; Wiley-VCH: Weinheim, 1998.

(22) Nicolaou, K. C.; Petasis, N. A.; Zipkin, R. E. *J. Am. Chem. Soc.* **1982**, *104*, 5560–5562 and the preceding three papers in the series.

(23) Heating **7a** in ethanol-*d*₆ at $65\text{ }^{\circ}\text{C}$ (1.8 h) leads to no discernible changes (NMR monitoring).